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I. INTRODUCTION

Science Applications, Inc.(SAl), conducted several shock tube experiments
from November 1977 to April 1978 under Defense Nuclear Agency (DNA) contract,
using the shock tube facilities located at the National Aeronautical and Space
Administration (NASA) AMES Research Center in Sunnyvale, California.

The smooth shock tube (Figure 1) had a driving section which was filled
with high pressure helium, separated from the driven section by a metal
diaphragm. The driving section was a metal cylinder 1.36 m long which tapered
to a square outlet at the diaphragm. A voltage differential was introduced
across a fine helical wire in the driver. This caused an explosive discharge
in the helium in the driver, expelling the helium into the driven section. The
shock tube itself (the driven section) was a 10-m-long, 0.1-m-diameter steel
tube, which evacuated into a large steel sphere. Two of the smooth tube exper-
iments (Run 7 and Run 10) were calculated at the Air Force Weapons Laboratory
(AFWL/NTESB). These calculations were used as input to the two-dimensional
ribbed tube calculations which are the subject of this report.
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II. THE EXPERIMENTS

There were two phases to the experiments: smooth tube calibration and
ribbed tube experiments. Shock tube apparatus was calibrated in the first
phase using smooth shock tubes. Data from the calibration shots were obtained 14
from pressure gauges flush with the wall of the shock tube. The performance and
response of smooth shock tubes has been explored in depth, so this calibration
provided an accurate experimental base on which to start.

Phase two used phase one driver conditions, so that a comparison between
the control (Phase I) and the experiment (Phase II) might be made.

The experiments, calculated by AFWL, were the SAI runs numbered 7 and 10.
Both runs had air pressures of one-tenth ambient (1.033 x 104 Pa) in the
driven section. In the driver section, Run 7 helium pressure was 2.7 x 10° Pa,
and Run 10 helium pressure was 2.7 x 105 Pa.

Ty IR ELDT . SO B WY T >Ry

Arrival times from the gauges in Runs 7 and 10 smooth tube were taken by
SAI and given to AFWL (Table 1). The data points were fit by a semiempirical,
heuristic search computer code known as HASTUR, developed at AFWL by Murphy
(1971). The resultant fit had the form:

D(t); = 3.24517 x 108 t-4 + 5.27054 x 10-6 t3/2 + 3.6234 x 10-2 t3/4 m (1)

for Run 7, and

B s R

D(t)yo = 8.96529 x 10-2 t1/2 + 2.02894 x 10-4t 1n(t) m (2)
for Run 10.

The instantaneous slope was found for both Equations 1 and 2 by

velocity = 93%52 = v(t) m/ps

i
]
i
3
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TABLE 1. SMOOTH SHOCK TUBE ARRIVAL TIMES

e i

Run 7 Run 10

Arrival Time (us) Station Distance (m) Arrival Time (us)

235 €/2.30 392

420 D/3.42 755

627 E/4.62 1139.

820 0/5.68 no data

1001 F/6.62 1818

1245 G/7.82 2256

1513 H/9.10 2733

1774 1/10.30 3210
The two resulting equations had the form (4)

v(t); = D' (t); = 1.2981 x 10° t3 + 7.9058 x 106 t¥'2
+2.7176 x 102 tY/* m/ps

for Run 7, and
v(t);o = D' (t);0 = 4.4826 x 102 t‘/2 + 2.02894 x 10% (1n(t) + 1) m/us

for Run 10. (5)
1f one now rearranges the Rankine-Hugoniot expression for the velocity of a
shock front

v=c|1l+ 155—1 . —gP Yz m/ps (6)
as
2
ap =<—2’:—2- - 1)- hPem (7)

the overpressure of the shock may be found as a function of time by substituting
Equations 4 and 5 into Equation 7. Note that P = ambient pressure, Ap = over-
pressure, v = velocity of the shock front, ¢ = local sound speed, and

y = cp/cv the ratio of the specific heat of air at constant pressure to the

specific heat of air at constant volume.

£ Japair-arew

T LAl &




AFWL-TR-79-65

The arrival times were used with Equations 4 and 5 to find the velocity of
the shock front. Overpressure was then plotted as a function of distance
(Figures 2 and 3). Two different but constant y's were used for each figure.
The fit velocities indicated that the shock did not increase in pressure with
distance (as suggested by the pressure data). These plots were compared against
AFWL's one-dimensional computer calculations, described later in this report.

The ribbed shock tube was the same piece of equipment as the smooth shock
tube with one section of smooth tube replaced by a ribbed section. The ribs
started at a point 3.92 m from the diaphragm and ran to 6.33 m from the dia-
phragm, resulting in a subsection 2.41 m long. There were 64 ribs, each
3.9 x 10-3 m high and 1.57 x 10-2 m long. Spacing between ribs was 2.34 x 10-2 m.

Gauges were located in the space between ribs, flush with the top of the
ribs so that the gauge would not add to the disturbance of the flow. Gauge
locations for the ribbed and smooth sections are contained in Table 2.

TABLE 2. GAUGE LOCATIONS

Gauge Tube Location (M)
c Both 0.87
D Both 2.01
E Both 3.20
F Ribbed 3.88
0, R1 Both 4.24
R, R2 Both 5.18
R3 Ribbed 6.12
G Smooth 6.38
s Ribbed 6.74
H' Ribbed 7.58
H Smooth 7.66
I Ribbed 8.80
I Smooth 8.88

TR P
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Figure 2. Run 7: Pressure vs. distance.
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III. THE CALCULATIONS l
k ONE-DIMENSIONAL SAP CALCULATIONS
One-dimensional hydrodynamic calculations were made to model the SAI smooth
! shock tube experiments. The one-dimensional (1-D) calculations of the waveforms

and peak pressures were than used as input to the two-dimensional (2-D) hydro-
dynamic calculation, which modeled the SAI ribbed shock tube experiment. The
1-D calculations were performed by SAP (Spherical Air Puff), a 1-D finite
difference hydrodynamic code developed by AFWL. SAP is fully described in
Reference 1.

For this problem, SAP used a Langrangian mesh. Initial zone size was 0.004 m
in length. The first 36 zones (1.36 m) were used for the driver section (helium)
and the next 266 zones (9.04 m) were used for the driven section (air). Total
length of the mesh was 10.40 m.

In addition to the usual parameter dumps on tape, information from the hydro
calculations was kept at fixed point locations, called stations. The stations
kept a time history of the velocity, density and overpressure at that point.

This enabled one to reconstruct a time history of the waveform of the shock at
that location. Station locations were made to match experimental gauge locations
for both the smooth and ribbed pipes. Additional stations were included at other
locations in the mesh so that the waveform might be further investigated.

Initial conditions for the 1-D runs closely simulated the actual input
conditions of the SAI experiments. Two materials were used for the calculations,
and equations of state for the two materials were chosen. For air, an equation
of state for real air was used (Ref. 2). For the helium equation of state, a
small subroutine was used which returned

P =2/3 pl (8)

where p = density, I = energy density and P = pressure.

1. Whitaker, W. A., et al., Theoretical Calculations of the Phenomenology
of HE Detonations, AFWL-TR-66-141, Air Force Weapons Laboratory, Kirtland
AFB, NM., November 1966.

2. Doan, L. R. and Nickel, G. H., A Subroutine for Equation of State of Air,
AFWL-TM-RTD (WLR-TN-63-2), Air Force Weapons Laboratory, Kirtland AFB, NM.,
May 1963.
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!! Because the energy was restricted to temperatures well below the first
ionization level of helium (about 1 eV), this equation of state sufficed.

Some controversy existed about the energy density which would be used as
input for the calculation. The energy densities obtained from SAI were from a
tabulated source; that is, they were readings from gauges on the capacitor bank. !
g A calculation of the theoretical energy using

E=1/2 Cv2 (9)
where C = capacitance, V = voltage differential, and E = energy,

showed a difference of up to 60 percent between the calculated energy density
and the tabulated energy density, shown in Table 3, received from SAI.

TABLE 3. ENERGY DIFFERENCES

Run Tabulated I Calculated I Difference
(J/kg) (J/kg)

7 2.014 x 107 8.7669 x 108 56%

10 2.9679 x 107 1.1974 x 167 60%

It was then decided to try four computer runs: two runs for Run 7 and two
runs for Run 10, using the different energy densities and comparing the results
with data. Table 4 contains the input information used for these four runs.

TABLE 4. INPUT FOR FIRST 1-D RUNS

Run I (J/kg) P, (Pa) P, (Pa)

7C 8.7669 x 106 2.735 x 10© 1.013 x 104
Al 2.0104 x 107 2.736 x 10® 1.013 x 104
10C 1.1974 x 107 2.736 x 105 1.013 x 104
10T 2.9679 x 107 2.736 x 10% 1.013 x 104

C ~ calculated 1
T - tabulated I

11
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The 1-D calculations took an average of 300 CDC Cyber 176 CP seconds to run
to completion. The peak pressures from the stations were then plotted as a
function of distance. The resulting plots (Figures 4 and 5) showed how the values
of peak pressure differed from the experimental value.

It was decided to weight the energy density from Run 7 so that the difference
between the two pressure versus distance curves (from the tabulated and calculated
1) would converge to the experimental pressure data. Referring to Figure 4, a

linear weighting formula was used:

Pe - P,
fLr\p P (Eu ) EL)= R (10)

u

where PF = fitted pressure, P, = lower pressure (tabulated), Pu = upper pressure

L

(calculated), Eu = upper energy, E, = lower energy and Ef = fitted energy. Ef

L
resulted in I = 1.4014 x 107 J/kg. Run 7 was then calculated again using this

new energy density. Results of this calculation are shown in Figure 2.

The Run 10 pressure versus distance data were found to follow closely those
obtained using the calculated energy density; therefore, no interpoliation was
necessary.

Peak pressure versus distance was then plotted for both Runs 7 and 10. The
initial peak pressures were found to match experimental data, but the pressure
did not drop off as rapidly in the calculation of Run 10 as did the data.
Therefore, it was decided to keep the energy densities the same (so the initial
peak pressure would stay the same) and shorten the driver length in the calcu-
lation, which would reduce the total energy and mass of the driver. This would
cause the peak pressure to fall at a faster rate. Two runs were then made for
Run 10: one with a driver length one-half and another run with a driver length
one-third of the original size. By weighting the drop-off rates of the runs with
the different driver lengths, a driver length of 79 percent of the original
driver length was decided to match the data most closely. Another 1-D calculation
was made using this driver length and was found to agree with the experimental
data (Figure 3).

The 21 percent reduction in driver length is necessitated by restriction of
the flow by the diaphragm support mechanism. This phenomenon was discussed
with and confirmed by Dr. Dannenberg, Director of the NASA/AMES shock tube
facility.

12
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The driver length for the Run 7 calculation was not shortened. The reasoning
was that the driver pressure for Run 7 was an order of magnitude greater than
that of Run 10, and subsequently the pressure waveform of the shock propagating
down the tube in Run 7 would not decay as did Run 10's waveform.

Figure 6 is a drawing of a polaroid of the experimental pressure waveforms
from Run 7 and Run 10. Note the decay of the waveform in Run 10 as compared
with Run 7, thus verifying the assumption of no appreciable decay.

Table 5 lists the final input conditions for Runs 7 and 10.

TABLE 5. FINAL INPUT FOR 1-D CALIBRATION RUNS

Run I1(J/kg) Density(kg/m3) Driver Length(m) P(Pa)

1.3/ 2.736 x 106
1.08 2.736 x 10°

7 1.4014 x 107 0.293 34 zones
10 1.974 x 107 0.0208 27 zones

TWO DIMENSIONAL HULL CALCULATIONS

The one-dimensional calculations described in the previous section were
used as input boundary conditions for the two-dimensional calculations. The
driver section for the one- and two-dimensional calculations was the same.
Because the ribs did not start until 3.92 m from the diaphragm., it was possible
to take advantage of the completed 1-D calculations and use them as boundary
conditions for the 2-D calculations.

The 2-D calculations were made with HULL, an AFWL-developed finite difference
code. HULL was created in 1971 by Durrett and Matuska and had evolved through
over 100 different versions by 1978. HULL is a dynamic,* multidimensional,
Eulerian system of hydrocodes which uses the momentum, mass, and energy

conservation equations with the equation of state to model hydrodynamic phenomena.

The HULL differencing scheme is fully second order accurate in both time and
space.** The differencing equations and complete HULL system are described in
Reference 3.

3. Fry, M. A. et al., The HULL Hydrodynamics Computer Code, Air Force Weapons
Laboratory, Kirtland AFB, NM., September 1977.

*Dynamic in the sense that HULL selects and compiles only those subroutines
it needs, keeps a tape library, etc.

**In the Lagrangian phase.

IR TR Y e R KA T
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Boundary and Input Conditions. First, we must insure that any reflected or
rarefacted wave generated at the rib would not propagate back to the boundary
of the mesh before the shock passed through the entire length of the shock tube.
If this were allowed, the reflected or rarefied wave would reach the bottom of the
mesh, causing unrealistic perturbations to the flow. Second, the input shock must
stabilize. Because the HULL differencing technique was different from the SAP
differencing technique (Eulerian vs. Lagrangian), the hydro would be performed
differently when the shock left the SAP mesh and was input in the HULL mesh.

When the preceding conditions were taken into consideration, a distance
equal to seven inner diameters of the shock tube was established between the
bottom of the mesh and first rib location.

Two calculations using one material (air) were made for the ribbed experiments
corresponding to the smooth tube Runs 7 and 10. A third calculation was made
using a very fine mesh with one material (air) for the Run 10.

Geometry I. The mesh for the first two runs was 6.8054 m long and 0.0547 m
wide. The mesh modeled the shock tube, with the left hand boundary of the mesh
corresponding to the axis of symmetry of the shock tube. The mesh used a constant
zone size over the ribbed section, with an increasing zone width ratio of 10 per-
cent and length ratio of 1 percent until the axis of symmetry was reached
radially and the end of the shock tube was reached axially. The first 13 radial
zones from the shock tube wall, moving radially towards the axis of symmetry,
had a zone width of 1.3 x 10-3 m. Zone width then increased by 10 percent for
the next 11 zones until a maximum zone width of 5.6 x 10-3 m was reached at the
axis. The first 403 axial zones (0.5239 m), starting from the input boundary,
had a length of 7.8 x 10-3 m. After the last rib, zone length then increased
by 1 percent per zone for the next 151 zones (6.2815 m). until a maximum zone
length of 3.5 x 10-2 m was reached at the end of the shock tube. Thus, a
subgrid of unvarying zone size existed in the mesh, having zones 1.3 x 10-3 m
in width by 7.8 x 10-3 m in length (Figure 7).

The ribs and trench wall were modeled by perfectly reflecting zones known as
islands. The ribs were modeled as rectangles by islands 3 zones high
(3.9 x 10-3m) and 2 zones wide (1.56 x 10-2 m). Spacings of 3 zones
(2.34 x 10-2 m) were used between the ribs. At the locations corresponding to
SAI gauge locations, the space between the ribs were filled by islands,
corresponding to the geometry in the test.
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Stations were placed at all SAI gauge locations as well as throughout
the rest of the mesh so that a time history of the flow parameters could be
observed at various points of interest.

Geometry II. The fine zone calculation using Run 10 input boundary
conditions used constant square zones of 6.5 x 10-* m on a side throughout the
entire mesh.

The mesh was 0.40590 m long (626 zones) by 0.0590 m wide (86 zones),
resulting in a total of 53,836 zones. The mesh started at 3.8875 m from the
diaphragm and ended at 4.29440 m (Figure 8). This left 0.0325 m (50 zones)
before the ribs. A distance of seven inner diameters before the ribs was not
chosen, as only nine ribs were modeled and the shock was observed to propagate
through the mesh before any reflected or rarefied wave propagated upstream to
that distance. Fifty zones were chosen so that the input shock from the SAP
1-D Run 10 calculation would stabilize. If a distance of seven inner diameters
(0.7098 m) had been used, 93,913 additional zones would have been added, making
a total of 147,778 zones. This would result in nearly a factor of 3 increases in
both run time and cost, without reaping any benefits.

The ribs were modeled by islands 6 zones high (3.9 x 10-3> m) and 24 zones
wide (1.56 x 10-2 m). Spacings of 36 zones (2.34 x 10-2 m) separated the
ribs. A total of nine ribs were in the fine zone calculation, with the space
between the last two ribs filled with an island to model the first gauge
position.
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IV. RIBBED SHOCK TUBE RUNS

The two ribbed shock tube calculations were run on a COC Cyber 176. The
runs took approximately 6.5 CPU hours each, averaging 5000 cycles per run. The
two calculations differed only in the input conditions from the two 1-D calcu-
lations (driver pressure of 2.7 x 10% Pa in Run 7 versus 2.7 x 10° Pa in Run 10).

The shock propagated up the tube from the input boundary. The shock took
approximately 15 to 20 zones to stabilize because the 1-D input was calculated
with much larger zone sizes compared to the 2-D zone sizes (0.04 m in the smooth
tube versus 0.0076 m in the rough tube). A stable shock soon developed in the
smooth part of the tube. The shock at this time had the same rise and a similar
waveform as the 1-D input shock. The arrival times of the two shocks were offset
by a constant because the position of the input boundary of the 2-D calculation
was slightly less than the station location of the 1-D shock that was input. As
shown by Figure 9, the two-dimensional shock waveform had a faster rate of decay
than the 1-D shock at this position. This was attributed to a rarefaction wave
propagating upstream after the shock reached the first rib interface. This
rarefaction wave tended to enhance the decay of the waveform at that point.

Referring to Figures 7 and 8, the ribs in the ribbed shock tube were actually
recessed into the tube. In other words, the smooth section was broken by a serie
of recessions, or troughs, and the ribs are points where the troughs are flush
with the shock tube wall (Figure 10).

FLOW IN THE FIRST TROUGH

When the shock reached the first trough (see Figure 11), the outer edge of
the shock front (i.e., that part in contact with the shock tube wall) spilled
over the edge of the trough. At that time, the shock front near the axis had no
information that the shock front edge had spilled into the trough. Thus the
shock front near the axis remained undisturbed. The shock front edge, however,
experienced an expansion and a subsequent loss of energy as it spilled over the
edge.

As the shock front advanced over the first trough, the fiow behind the shock
front edge continued to spill down into the trough. The shock front edge
continued to propagate into the trough until it hit the corner made with the
trough wall and the bottom of the trough. The impact generated a reflected shock
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which propagated from the trough bottom towards the opposite trough wall. The
original shock front edge continued to expand into the trough. The first
evidence of a curving of the entire shock front arose when the shock front edge
(that was experiencing expansion) hit the bottom corner of the opposite trench
wall, 0.1 pys before it hit the top of the opposite trench wall. The shock front
near the center of axis continued to propagate undisturbed. The shock front at
the center of axis arrived at a point above the opposite trench wall 0.2 ps
before the perturbed shock reached the opposite wall of the trough.

Once the shock hit the opposite trough wall, the shock was reflected upstream.
Figure 11 depicts the timing sequence of the first trough experienced.

The flow in the bottom of the trough steadily decreased, changing to a
direction toward the first trench wall. By studying contour diagrams of this

region, one immediately observes the vortices thus formed between the ribs
(Appendix A).

When the shock reached the ribbed portion of the tube. a rarefaction and
compression wave developed. The compression wave (or bow wave) propagated up
the tube with the flow, while the rarefaction wave propagated back down the tube
toward the input boundary. Each time a rib was hit by the shock front, a rar-
efaction and compression wave developed. The bow waves arched towards the middle
of the shock tube (axis) and interacted with the waves developed from previous
ribs. The interaction of the bow waves and shock front produced a new shock front
consisting of multiple shock waves. This may be seen in density contour plots of
the calculation (Figure 12). Contour plots were obtained from hydro data
(velocities, pressure, mass and energy) which were stored on tape periodically
during the calcutlation.

The ribs slowed the shock in the sense that the arrival times for the shock
in the ribbed calculation were slightly greater than the arrival times for the
smooth calculation. The ribs also caused the initial peak pressure to drop,
followed by an increase in pressure greater than that observed in the smooth
calculation (Figure 13). This increase in pressure was attributed to stagnation,
i.e., the dynamic pressure was converted to overpressure. This is demonstrated
in Figure 14, which compares the smooth tube dynamic pressure with the ribbed
tube axial dynamic pressure at a point 5.18 m from the diaphragm. The pressure
waveform does not change significantly along the radial direction.
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FINE ZONE CALCULATION

Some question arose concerning the accuracy of using zone sizes of
7.6 x 10-3 m by 1.3 x 10-3 m, so a very fine zone calculation was made of Run 10.
This fine zone calculation used a constant zone size of 6.5 x 10-* m by
6.5 x 10-4 m which covered the first eight ribs.

Like the coarse zone calculation, the fine zone calculation took approxi-
mately 20 zones to stabilize the shock. Once the shock front hit the first
rib, the shock wave lost strength as it flowed down the side of the rib. This
resulted in a rarefaction wave propagating upstream. A bow wave was immediately
formed as the shock rose over the next rib.

One may further appreciate the significance that the first protuberance
(rib) had on the flow by studying the time histories of various parameters
near the first rib. The following time histories all occurred at equal radial
distances (5.037 x 10-2 m) from the axis, and at varius axial distances.

The time history of the overpressure 2.5 x 10->m before the first trench
(3.9175 m) from the diaphragm, station 99) closely followed the time history
of the 1-D input wave. A peak of 1.5 x 10% Pa with a sharp drop off by a
factor of 3 in 0.2 ms was observed, followed by a slow decay to 0.8 x 10% Pa
in a 2.2 ms. The calculation had not been run further as the initial shock had
already passed through the mesh.

At the point where the fir.t trough started (3.9023 m from the diaphragm,
station 100), a time history of the overpressure showed the wave initially
behaving as a 1-D shock peaking at 1.2 x 108 Pa, dropping off to 8 x 105 Pa.
One-half millisecond later, however, the overpressure sharply climbed to a
maximum of 1.47 x 10° Pa. The wave then fell slightly and climbed again,
resulting in two peaks in a span of 0.3 ms. The overpressure then decayed
(Figure 15). Station 101, 2.2 x 10-2 m downstream from station 100, kept a
time history of flow parameters at the point where the first trough ended and
the first rib began (Figure 8). Stagnation of the flow is readily apparent at
this point. Figure 16 shows the axial dynamic pressure dropping as the over-
pressure at that point increases (i.e., kinetic energy converted to potential
energy), indicating the stagnation due to the reflected shock coming from that
rib. Thus, the second peak observed in the overpressure at station 100
(Figure 15) is attributed to the reflected shock from the first rib.
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The formation of bow waves or compression.waves and rarefaction is seen
when one studies density contour plots of the flow (Appendix A). A density
contour plot was compared to a picture that SAI took, using holography, of a
ribbed shock tube. Figure 17 shows the close similarity between the picture of
the flow and the computer generated piot. One should note the equal number ?
and position of visible bow waves, the bending of the shock front, and the L
location of the waves, indicating that the fine zone calculation closely matches )
the experiment.

Pressure waveforms from the fine zone calculations were compared with
digitized experimental wave forms (Appendix B). The wave forms, peak pressures,
and rise agree to an extent. The coarse zone calculation compared to within
20 percent of the fine zone calculation, indicating that the coarse zone
calculation was a good run for qualitative and some quantitative purposes.
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V. CONCLUSIONS

The HULL hydrocode has modeled two ribbed shock tube experiments. An
extensive amount of work was accomplished to insure that the exact input
conditions (as far as pressures, energies and waveforms) were met. One-
dimensional calculations modeted the preliminary smooth shock tube experiments.
The one-dimensional calculations were adjusted to closely match unique input
conditions. These one-dimensional calculations were used as input for two-
dimensional calculations which modeled the ribbed shock tubes. A very fine zone
calculation was then run to verify the use of coarse zones. The fine zone
calculation indicated that errors were less than 20 percent between the coarse
and fine zone runs. Waveforms of the smooth and rough tube runs were compared
and found to differ, as expected. The main differences in the rough tube runs
were greater arrival times, smaller initial peak pressures, and a greater over-
pressure (attributed to stagnation).

Density contour plots of the flow were compared with a picture of a holograph
of a ribbed tube and found to match closely. The computer generated plot was
found to show the major bow waves and bending of the shock front which could be
seen in the photograph. The plot also showed the presence of a disturbance
(vortex) near the ribs after the shock passed by.

It has been shown that in both quantitative and qualitative comparisons
between experiment and computation, HULL has modeled the physical phenom~na
observed in ribbed shock tubes. By using coarse zones, errors were increased
by 20 percent or less, indicating that HULL is a powerful tool in examining
this perturbed type of flow with less run time by using coarse zones instead
of very fine zones.
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APPENDIX A
DENSITY CONTOUR PLOTS

Pressure, density, energy and velocities of each zone are stored on tape ‘J
at standard times; i.e., times which are specified by the programmer. These -
thermodynamic variables are used to produce contour plots. The following }
density contour plots were made in several regions. The first region is the {
area near the first trough, the other regions were in upstream troughs.
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APPENDIX B
STATION PLOTS

Station plots are the calculational equivalents of experimental sensors.
At the prescribed station points, all available calculated data are recorded.
The plots show the value of the hydrodynamic variables with respect to time.
The following plots are station plots superimposed with digitized experimental
data obtained from polaroids of SAI pressure waveforms.
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